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ABSTRACT 

A two-dimensional plasma actuator analysis code has been developed. A time-accurate Navier-Stokes 

CFD code was coupled with a time-dependent, phenomenological model of an alternating current, single 

dielectric barrier discharge plasma actuator. The accuracy of the flow solver was demonstrated using a standard 

CFD validation case. The plasma actuator model’s ability to affect fluid motion was tested by inducing motion 

in quiescent air over a flat plate using only the plasma actuator model. The resulting fluid motion was similar to 

the induced motion observed in plasma actuator experiments. 
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INTRODUCTION

Aerodynamic flow control by means of plasma actuators is an active area of research in the Air Force 

and in academia. Experiments have shown that these devices can be used to induce flow movement in a 

stationary air mass, and to reattach separated flow on airfoils at high angles of attack. Plasma actuators offer 

potential advantages in weight reduction, cost, and manufacturability over traditional flow control devices such 

as slats and flaps1.

Plasma actuators consist of two electrodes separated by a dielectric material. The electrodes are offset, 

with one electrode exposed to the air and the other embedded in the dielectric material as shown in Figure 1. 

When a high voltage alternating current is applied to the electrodes, the air above the insulated electrode 

ionizes, beginning at the edge of the exposed electrode and spreading across the insulated electrode. The extent 

to which the plasma field covers the insulated electrode increases and decreases with the rising and falling 

voltage. The ionized region produces a “body force”, which induces motion in the surrounding air2.

Figure 1: Plasma Actuator Schematic3

In FY 2004-2005, AFOSR sponsored AFRL/MNAC to perform research into the effectiveness of 

plasma actuators as aerodynamic control devices. The ultimate objective of this research was to model the 

effects of plasma actuators on aerodynamic flow fields by incorporating a first-principles plasma generation 

model into a Navier-Stokes flow solver. Both the plasma code and the flow solver code were under 

development in FY 2004-2005. While the flow solver had been successfully demonstrated on several standard 

validation cases, development of the plasma code had not progressed to the point that it could be incorporated 

into the flow solver. Because of this, AFRL/MNAC initiated a collaborative agreement with AFOSR-sponsored 

researchers at the University of Notre Dame to incorporate a plasma actuator model developed there into the 

AFRL/MNAC flow solver. 

The Notre Dame model may best be described as phenomenological. While this model does not 

simulate the creation and motion of ions in the plasma field, it does a credible job generating force fields that 

induce the type of motion observed in plasma actuator experiments. Instead of simulating the plasma field, this 

model represents the region over the insulated electrode as a set of parallel electronic circuits, such as the one 

shown in Figure 2, distributed along the insulated electrode. The circuit capacitances and resistances are derived 
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from both experimentally determined and inferred electrical properties of air. The individual circuits are 

activated when the voltage difference between the exposed and insulated electrodes exceeds a critical threshold. 

In this way the advance and retreat of the plasma field is simulated as the applied voltage oscillates. 

Figure 2: Plasma Actuator Circuit Model2

The voltage distribution resulting from the solution of the time-varying circuit equations is used on the 

boundary of a two-dimensional Poisson equation solver that computes the electric potential in the vicinity of the 

plasma actuator. A body force field calculated from this electric potential is used in the Navier-Stokes flow 

solver to induce motion in the flow. 

The remainder of this report will describe the solution algorithms employed in the two-dimensional 

Navier-Stokes flow solver with the integrated plasma actuator model. Several example solutions will be 

presented to demonstrate the flow solver’s capability. 

TECHNICAL APPROACH 

The flow solver developed in this effort solves the Navier-Stokes equations of fluid motion using 

simple numerical algorithms. Although solution times could be reduced by using more complicated solution 

techniques, simple algorithms were chosen in order to reduce the effort required to understand the code well 

enough to perform modifications. 

Since the purpose of this research effort was to study the effects of plasma actuators on air flows, 

extraordinarily high solution fidelity was not a requirement. The flow solver was only required to produce 

solutions of sufficient fidelity that the effects of the plasma actuator on the flowfield could be studied. 

In this finite-volume flow solver, the spatially varying terms are discretized using central differencing4

stabilized with flux-limiting numerical dissipation5. Turbulent terms are computed using the so-called 

“detached eddy simulation” version of the Spalart-Allmaras turbulence model6. Temporal integration is 

performed using the dual-time stepping algorithm7. The plasma actuator is simulated using the Notre Dame 

model2,8.
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Equations of Fluid Motion 

The two-dimensional Navier-Stokes equations of fluid motion in conservation law form, accounting 

for body forces, are9
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The shear stresses ( **) and heat fluxes (q*) in Eq (3) are given by: 
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The gas properties appearing in Eqs (3)-(4) are: 

 Density 

u,v Cartesian velocity components 

E Total energy 

fx, fy Cartesian body force components (per unit volume) 

p Pressure 

H Total enthalpy (E + p/ )

T Temperature 

 Coefficient of viscosity 

k Coefficient of thermal conductivity 

Two equations of state can be used to relate the fluid properties: 
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22 vu
2
1E1p  or RTp  (5) 

Finite Volume Formulation 

The Navier-Stokes equations are solved using a cell-centered finite volume (FV) formulation. In the 

FV scheme, the domain of interest is subdivided into small control volumes, or cells. A portion of a two-

dimensional computational grid is shown in Figure 3. The details of this diagram will be explained in the 

following discussion. 

Figure 3: A Portion of a Two-Dimensional Computational Grid 

The fluid properties are assumed to be constant throughout a particular grid cell at any time during the 

solution process. Temporal changes in the cell fluid properties are determined by tracking the flux of the fluid 

properties across the cell boundaries. Eq (1) can be expressed as 

SĵFîE
t
Q  (6) 

Treating the fluid properties within a cell as constant and integrating Eq (6) over the cell volume V yields 

VSdVĵFîE
t
QV

Vol

 (7) 

where (•) indicates a discrete change in the indicated quantity. Gauss’ theorem can be used to convert the 

volume integral of Eq (7) into a surface integral: 
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In Eq (8) the summation is over the bounding faces of the cell, which number Nf. AN is the area of bounding 

face N, and ĵnînn̂ yxN  is an outward directed unit vector normal to face N (see Figure 1). 

The inviscid and viscous terms can be treated separately: 

0VSQRQR
t
QV vi  (9) 

where the inviscid and viscous residuals are 
Nf

1N
NNNiii An̂ĵFîEQR  (10) 

Nf

1N
NNNvvv An̂ĵFîEQR  (11) 

Central Differencing 

In the central difference scheme, Eq (10) can be written 
Nf

1N
NNi A)Q(FQR  (12) 
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In Eq (13), subscripted flow properties (•)N represent the average value of the indicated flow property at cell 

face N. For example, 

n0N VV
2
1V  (14) 

where 0V  is the velocity in the cell under consideration and nV  is the velocity in the cell adjacent to cell 0 at 

face N (see Figure 1). 

The viscous fluxes involve partial derivatives of the Cartesian velocity components and the 

temperature. The partial derivatives for a fluid property in cell 0 can be calculated from10
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Here, (•) represents the property (e.g. T) to be differentiated. 

The coefficient of viscosity is calculated from Sutherland’s law 
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The coefficient of thermal conductivity is calculated from 

Pr1
Rk  (18) 

where  is the ratio of specific heats (1.4 for air), R is the gas constant (287 m2/s2 ºK for air), and Pr is the 

laminar Prandtl number (0.72 for air). 

The velocity and temperature gradient terms are calculated for each cell using Eqs (15). Then the 

viscous residual term can be calculated using Eq (11) where, for example 
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Artificial Dissipation 

Flow solutions calculated using central difference spatial discretization schemes sometimes exhibit a 

numerical phenomenon known as odd-even decoupling, in which alternating grid points converge to different 

solutions. In order to stabilize the calculations when solving the Euler or Navier-Stokes equations using a 

central difference scheme, it is often necessary to add a dissipative term to the FV integral. The numerical 

dissipation scheme of Yoon and Kwak5 is used here. This scheme provides stabilizing background dissipation 

to the central difference discretization, and employs flux limiters to smooth out numerical dispersion around 

sharp gradients such as shocks. 

At each cell interface a dissipative term is added to the flux. At a cell interface in the i-direction of a 

structured grid, for example, the dissipative term is 

2
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3i1i
2

1i2
1i ee2ed  (20) 

In Eq (20), the (•)i+1/2 terms are evaluated at the cell faces and the (•)i terms are evaluated at the cell centers. The 

coefficient is: 

2
1i2/1i2

1i10
2

1i AanV  (21) 

where 0 provides a threshold dissipation and 1 ensures adequate dissipation in the vicinity of a shock. Ai+1/2 is 

the cell face area and i+1/2 is a “pressure switch” that becomes large in the vicinity of a shock: 



 7

2i1ii1i21i ,,,max  (22) 

1ii1i

1ii1i
i pp2p

pp2p
 (23) 

 and  are flux-limiting functions: 
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and, for example, when computing dissipation for the continuity equation: 

i1i
2

1ie  (27) 

Explicit Time Integration 

Eq (9) can be rewritten to indicate numerical integration over a discrete time interval: 

nn1n QR
V

tQQ  (28) 

where R(Q) = Ri(Q) – Rv(Q) – VS and the superscripts (•)n and (•)n+1 indicate flowfield properties evaluated at 

the current solution time t and at the next solution time t+ t, respectively. 

Eq (28) is the single-step Euler explicit time integration from time level n to time level n+1 and has 

first order temporal accuracy. Multistage explicit integration schemes have greater temporal accuracy than this 

single stage scheme. For example, an M-stage Runge-Kutta scheme has a formal accuracy of M for a linear 

equation11. In the M-stage Runge-Kutta scheme, the solution is advanced over the time interval t by 

M1n

1mm0m

n0
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tQQ
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Here, the parenthesized superscripts denote the stages of the Runge-Kutta scheme. The weighting factors (m)

are calculated from 

,
m1M

1m M,,2,1m  (30) 
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The allowable time step for stable calculations is a function of wave propagation speed through the 

grid cells. For time-accurate solutions, the time step t is the global minimum of11

yx FF
Vt  (31) 

with 

yy

xx

ACvF

ACuF
 (32) 

where V is a cell volume, C is the speed of sound in the cell, Ax and Ay are the projected areas of the cell in the 

x- and y-directions. Multistage Runge-Kutta integration allows the time restriction to be relaxed, so the time 

step calculated using Eq (31) can be multiplied by a factor CFL  1. 

Accelerating Convergence 

Convergence to a steady state solution can be accelerated using local time-stepping and implicit 

residual smoothing during the Runge-Kutta integration11.

Local time-stepping dispenses with global time accuracy by advancing the solution in each cell using 

the time step calculated for that cell using Eq (31). This drives the global solution error rapidly to zero since the 

solution errors are propagated through each cell, and hence through and out of the solution domain, at the 

maximum possible rate. 

Implicit residual smoothing gives the explicit time integration scheme an implicit character, allowing 

solution advancement at time steps greater than indicated by the stability limit of the explicit scheme. A 

Laplacian smoothing operator is applied: 

N
2
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where 
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Eq (33) is solved using Jacobi iteration: 
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Effective values of the weighting factor  range from 0.5 to 0.8. In Reference 11, the authors reported a 

doubling of the allowable time step for Euler solutions on unstructured grids by using two Jacobi iterations per 

Runge-Kutta stage with  = 0.5. 

Dual Time-Stepping 

Dual time-stepping (DTS) is an implicit time integration scheme7. In DTS, the spatial terms of Eq (6) 

are discretized at time n+1, rather than at time n, and the temporal term is discretized with a three-point 

backward difference, resulting in the following variation of Eq (9): 

1n
1nn1n

QR
t2

QQ4Q3V  (36) 

This equation is solved by introducing Q*, an approximation to Qn+1, and a pseudo-time variable t*.

The following equation results: 

**
1nn*

*
*

*
QR

t2
QQ4Q3VQR

t
QV  (37) 

Eq (37) can be solved using the explicit Runge-Kutta scheme of Eq (29) with local time-stepping in 

pseudo-time (t*) and implicit residual smoothing. Time accuracy is ensured by the inclusion of the time 

derivative term in R*( Q*). Eq (37) is solved iteratively until it converges on a solution for Q*:

1. Set k = 0 

2. Set Qk = Qn

3. Repeat until Qk+1  Qk:

a. Solve Eq (37) for Qk+1 using Eq (29) with local time-stepping and implicit 

residual smoothing, Q(0) = Qk, and Qk+1 = Q(M)

b. Set k = k + 1 

4. Set Qn+1 = Qk

Turbulence Model 

Inclusion of a turbulence model was not originally planned by the MNAC researchers because 

turbulence was not expected to play a significant role in the flows to be investigated. However, as the code was 

being evaluated against standard CFD code validation cases, it became apparent that unsteady, separated 

flowfields were developing in laminar solutions of test cases that were known not to exhibit such behavior. It 

was decided to incorporate a turbulence model into the flow solver to ensure that the code would produce 

separated flows only in those cases where it could reasonably be expected to occur. 

Turbulent terms are computed using a variation of the Spalart-Allmaras one-equation turbulence 

model. The Spalart-Allmaras equation, written without transition terms, is7:
2

w1w2bL1b d

~
fC~~C~~1~S~CV~

t

~
 (38) 
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Eq (38) is solved for ~ , from which the turbulent viscosity coefficient can be calculated. The various terms 

appearing here are defined in References 6 and 7. The variation from the standard Spalart-Allmaras model lies 

in the d term which appears explicitly in Eq (38) as well as implicitly in the definitions of several of the other 

terms in the equation. In the original scheme, d is the distance from a cell center point to the nearest solid wall 

boundary point. Here, d is the smaller of this distance and the local grid spacing. In the near vicinity of a solid 

wall, Eq (38) behaves as a turbulence model, but away from the wall, it assumes the nature of the subgrid scale 

closure models used in large eddy simulation codes. 

The solution of Eq (38) will not be discussed in great detail here. The spatial discretization is a first 

order upwind scheme7, and the temporal solver is the multistage Runge-Kutta scheme of Eq (29) with local 

time-stepping. Because Eq (38) depends on the current flow field, it is not solved simultaneously with the 

Navier-Stokes equations. Rather, Eq (38) is advanced one local time step for each stage of the flowfield Runge-

Kutta integration. Using this approach, Eq (38) can be driven to a steady-state solution in the limit of a steady-

state flowfield solution. 

The turbulent viscosity coefficient t is calculated from ~ , and is added to the laminar viscosity 

coefficient calculated using Eq (16), leading to the following redefinition of :

tl  (39) 

The coefficient of thermal conductivity for turbulent flow is calculated by 

t

tl

PrPr1
Rk  (40) 

Prt is the turbulent Prandtl number (0.9 for air). 

Plasma Actuator Model 

The plasma actuator model provided by the University of Notre Dame uses a distribution of N parallel 

electronic circuits, as shown in Figure 3, to simulate the response of the region above the insulated electrode to 

an applied voltage8. Each subcircuit represents a portion of the insulated electrode length and has finite width 

and length. The first subcircuit has the shortest length while the Nth subcircuit has the longest. Each subcircuit 

has two capacitors: one for the air above the dielectric and one for the dielectric layer. The plasma resistance is 

modeled with different values for the forward (positive plasma current) and backward (negative plasma current) 

portions of the AC cycle. Diodes turn the resistance subcircuits on in the presence of plasma and off in its 

absence. 
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Figure 3: Parallel Plasma Actuator Circuit Model8

The air capacitance is defined as: 

n

na0
an l

AC  (41) 

where 0 is the permittivity of free space (8.854×10-12 F/m), a is the dielectric coefficient of air, An is the cross-

sectional area of the air capacitor, and ln is distance from the edge of the exposed electrode to solution point n

on the dielectric surface. 

The dielectric capacitance is: 

d

dd0
dn l

AC  (42) 

Here, d is the dielectric coefficient of the dielectric material, Ad is the cross-sectional area of the dielectric 

capacitor, and ld is the thickness of the dielectric material. 

The subcircuit resistance is: 

n

na
n A

lR  (43) 

where a is the resistivity of the air and An and ln are the cross-sectional area and length of the subcircuit. 

Different values are assigned to Rn depending on the direction of current flow; Rnf is used to denote the 

resistance for forward plasma current flow, while Rnb is used for backward current flow. 

Given a time-dependent applied voltage, the voltage on the dielectric surface in subcircuit n is 

described by 

dnan

p
n

dnan

anappn

CC
tI

k
CC

C
dt

tdV
dt

tdV  (44) 

where kn = 1 if plasma is ignited in the circuit and zero otherwise, and the plasma current is given by 

tVtV
R
1tI napp

n
p  (45) 

The resistance takes on values Rnf or Rnb depending on the direction of the current in the plasma. 
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Equation (44) is solved using multistage Runge-Kutta time integration. Then, the applied voltage and 

the subcircuit voltages are used as boundary conditions in a two-dimensional solution to the Poisson equation, 

which describes the electric potential :

2
D

2

2

2

2

yx
 (46) 

The term D is the characteristic length for electrostatic shielding in plasma, called the Debye length. 

The solution domain for Eq (46) is a section extracted from the overall Navier-Stokes grid in the 

immediate vicinity of the plasma actuator. This grid section is subdivided using a nonlinear LaGrange 

interpolation procedure12. Once the body forces have been determined, they are mapped back to the Navier-

Stokes grid. This procedure allows the plasma actuator to be modeled in fine detail without requiring the flow 

solver to operate on an inordinate number of field points. The boundary conditions are applied to the domain 

boundaries as shown in Figure 4. 

Figure 4: Poisson Equation Solution Domain with Boundary Conditions 

In practice, the Poisson equation is applied only to the region above the insulated electrode where 

plasma is present. Elsewhere, the LaPlace equation is solved: 

0
yx 2

2

2

2
 (47) 

Once Eqs (46) and (47) are solved, the body force per volume of plasma at each point in the solution domain 

can be computed. The electric field E  is calculated from the electric potential: 

E  (48) 

And the body force is: 

2
D

0
2
D

0
b Ef  (49) 

Since the computational grids used for real configurations such as airfoils are not Cartesian with even 

spacing in both coordinate directions, the Poisson/Laplace equations are recast from Cartesian coordinates (x,y) 
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to general curvilinear coordinates ( , ) in the flow solver. The curvilinear coordinate system is Cartesian with 

uniform spacing of one unit between points in both  and .

The transformed Poisson equation is13

2
D

2 edcb2aJ  (50) 

where 

xyyx
1J  (51) 
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yyxxb
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22
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 (52) 

and

cxbx2ax  (53) 

cyby2ay  (54) 

effect the coordinate transformation. 

Eq (50) is solved using a finite difference, successive line over-relaxation (SLOR) algorithm. Using 

the standard finite difference formulae9
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the discrete form of Eq (50) for solution at the ith grid line is 

ij1j,i
ij

ijijijij2
D

21j,i
ij

ij R
2

d
cca2

J
1

2
d

c  (56) 

where 

1j,1i1j,1i1j,1i1j,1i
ij

j,1ij,1i
ij

j,1ij,1iijij 2
b

2
e

aR  (57) 

using the currently available values of . Eq (57) is solved using the Thomas algorithm for tridiagonal 

matrices6.
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The electric field components [Eq (48)] are computed using the following reverse coordinate 

transformations: 

yyyy

xxxx

E

E
 (58) 

where 

Jy

Jy

x

x      
Jx

Jx

y

y  (59) 

In the plasma actuator model supplied by the University of Notre Dame, the sign of the body force is 

the opposite of that shown in Eq (49). The reason for the body force sign reversal in the Notre Dame code is 

unknown; this issue had not been resolved with the Notre Dame researchers at the time of this writing. 

RESULTS

Two example calculations are presented here. The first is an airfoil flowfield solution, calculated 

without the plasma actuator model, which demonstrates the accuracy of the flow solver and illustrates the 

importance of modeling turbulence in the flow solutions. The second solution employs a plasma actuator to 

induce motion in quiescent air over a flat plate. 

RAE 2822 Airfoil 

Laminar and turbulent solutions for a standard RAE 2822 airfoil CFD code validation case (Mach 

0.729,  = 2.31°) are contrasted in Figure 5. The surface pressure distributions from the laminar and turbulent 

solutions are compared to wind tunnel test data for this case in Figure 6. Agreement of the turbulent solution 

pressure with the data is excellent. 

These results illustrate the importance of turbulence modeling for accurate flow characterization. 

Plasma actuators are being investigated for use in fluid separation control. It is imperative that tools developed 

to simulate plasma actuator effects adequately model the basic fluid flowfield so that valid conclusions can be 

drawn from the simulations about the fluid flow manipulation capability of these devices. Separation should 

only be indicated in the flow simulations in those cases in which separation is likely to occur. In the present 

case, the laminar solution inaccurately produced large scale flow separation and grossly inaccurate pressure 

fields. Including turbulence modeling in the simulation eliminated the separation and greatly improved the 

agreement between the simulation and test data. 
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(a) Laminar 

(b) Turbulent 

Figure 5: Laminar and Turbulent Solutions at Corresponding Solution Times for the RAE 2822 Airfoil, 
Mach 0.729,  = 2.31° 

Figure 6: RAE 2822 Airfoil Pressure Data (Points), Laminar Simulation (Red Line) and Turbulent 
Simulation (Blue Line) 
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Flat Plate with Plasma Actuator 

The plasma actuator model was tested by evaluating the effect of a plasma actuator mounted on a flat 

plate on the surrounding quiescent air. The solution domain for this case was very similar to the domain 

illustrated in Figure 4. Both the exposed and hidden electrodes had a length of ½ inch (0.0127 m). The 

dielectric

material was 3-mil thick (7.62×10-5 m) Kapton film with a dielectric coefficient of 3.5. The voltage of 5 kV was 

applied at an AC frequency of 2 kHz. 

The 2m×1m, 161×81 point computational grid was clustered near the plasma actuator, which was 

centered on the lower boundary of the solution domain. There were 21 evenly spaced points on each electrode. 

The spacing normal to the wall was a very coarse 10-4 m. The computational grid is shown in Figure 7. 

 (a) Solution Domain (b) Plasma Actuator Region 

Figure 7: Computational Grid for Plasma Actuator on a Flat Plate 

The flat plate solution was run using a computational time step of 2 s for 4,000 time steps. The 

development of a left-to-right near-wall flow is shown in Figure 8 for the first two AC cycles. Note the 

development and convection of the large initial starting vortex, and the smaller secondary vortex that forms 

during the second AC cycle. The extent of induced fluid motion at different simulation times is shown in Figure 

9. The simulated fluid motion is consistent with the experimental observations of Enloe et al3.

CONCLUSION AND RECOMMENDATIONS 

A time-accurate Navier-Stokes flow solver with an integrated plasma actuator body force model has been 

developed. The base flow solver’s accuracy has been demonstrated using standard validation cases. Operation 

of the plasma actuator model has also been successfully demonstrated, although a thorough validation study has 

not been conducted. 

Since AFOSR is no longer providing funding to AFRL/MNAC for this research, AFRL/MNAC’s 

research effort is being discontinued. However, under an agreement reached with the University of Notre Dame, 

the code will be provided to researchers there in the hope that it can be fully developed into a useful analysis 

tool. The following suggestions are offered for future development of the code: 
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 (a) t = 0.2 ms (b) t = 0.4 ms 

 (c) t = 0.6 ms (d) t = 0.8 ms 

 (e) t = 1.0 ms (f) t = 1.2 ms 

 (g) t = 1.4 ms (h) t = 1.6 ms 

 (i) t = 1.8 ms (j) t = 2.0 ms 

Figure 8: Near-Wall Momentum Vectors During the First Two Plasma Actuator AC Cycles 
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(a) t = 2 ms 

(b) t = 4 ms 

(c) t = 6 ms 

(d) t = 8 ms 

Figure 9: X-Momentum Propagation During the Plasma Actuator Simulation 

Thorough Validation of the Plasma Actuator Model: Although great care was taken in the plasma 

actuator model implementation, the model originators should carefully examine the code and output to 

ensure the proper implementation and operation of the plasma actuator model. 

Multiple Boundary Conditions on Grid Boundaries: The flow solver currently allows the use of only one 

boundary condition per grid boundary. This limits the allowable computational grid types to H- and O-

topologies. This simple change would allow the use of C-topology grids, which are better suited for airfoil 

analysis than the presently allowed O-topology grids. This capability was included in a three-dimensional 

flow solver developed for this research effort and should serve as an example for implementation of a 

similar capability in the two-dimensional code. 

Characteristic Outer Boundary Condition: Currently, only extrapolation and freestream conditions can be 

imposed at the outer boundary. This introduces a requirement that the outer grid boundary of an airfoil grid 

must be a great physical distance from the inner grid boundary in order to adequately simulate real 
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flowfields. This capability was also included in the previously mentioned three-dimensional flow solver 

and can be easily implemented in the two-dimensional code. 

Multiple Plasma Actuators: Due to time constraints, this capability was not written into the code. 

However, such a capability is essential if this analysis capability is to be maximized. 

Parallel Processing Capability: While the code runs rapidly on a single CPU, analyses could be conducted 

much more rapidly if this capability was added. 
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